
Fast Remote Instrument
Control with HiSLIP
Application Note

Products:

| R&SCMW500

| R&SFSW

| R&SFPS

| R&SFSV

| R&SFSVR

| R&SZNB

| R&SZNBT

| R&SZNC

| R&SRTO

| R&SRTE

| R&SRSC

| R&SSMW200A

| R&SSMBV100A

| R&SSMA100A

| R&SSMB100A

| R&SSGS100A

| R&SSGT100A

| R&SSGU100A

| R&SSMC100A

| R&SSMF100A

| R&SCMA180

This application note introduces the IVI High
Speed LAN Instrument Protocol (HiSLIP) and
outlines its main features. HiSLIP is the
successor to the VXI-11 LAN remote control
protocol. This document also describes
guidelines for using this protocol.

A
pp

lic
at

io
n

N
ot

e

J.
 E

ng
el

br
ec

ht
,

K
. L

ie
nh

ar
t,

G
. K

ie
ne

r

12
-N

ov
-1

4-
1M

A
20

8_
2e

http://www.rohde-schwarz.com/en/product/cmw500-productstartpage_63493-10341.html
http://www.rohde-schwarz.com/en/product/fsw-productstartpage_63493-11793.html
http://www.rohde-schwarz.com/en/product/fps-productstartpage_63493-54535.html
http://www.rohde-schwarz.com/en/product/fsv-productstartpage_63493-10098.html
http://www.rohde-schwarz.com/en/product/fsvr-productstartpage_63493-11047.html
http://www.rohde-schwarz.com/en/product/znb-productstartpage_63493-11648.html
http://www.rohde-schwarz.com/en/product/znbt-productstartpage_63493-58917.html
http://www.rohde-schwarz.com/en/product/znc-productstartpage_63493-11642.html
http://www.rohde-schwarz.com/en/product/rto-productstartpage_63493-10790.html
http://www.rohde-schwarz.com/en/product/rte-productstartpage_63493-54848.html
http://www.rohde-schwarz.com/en/product/rsc-productstartpage_63493-11395.html
http://www.rohde-schwarz.com/en/product/smw200a-productstartpage_63493-38656.html
http://www.rohde-schwarz.com/en/product/smbv100a-productstartpage_63493-10220.html
http://www.rohde-schwarz.com/en/product/sma100a-productstartpage_63493-7566.html
http://www.rohde-schwarz.com/en/product/smb100a-productstartpage_63493-9379.html
http://www.rohde-schwarz.com/en/product/sgs100a-productstartpage_63493-9030.html
http://www.rohde-schwarz.com/en/product/sgt100a-productstartpage_63493-61573.html
http://www.rohde-schwarz.com/en/product/sgu100a-productstartpage_63493-60676.html
http://www.rohde-schwarz.com/en/product/smc100a-productstartpage_63493-10181.html
http://www.rohde-schwarz.com/en/product/smf100a-productstartpage_63493-8447.html
http://www.rohde-schwarz.com/en/product/cma180-productstartpage_63493-56068.html

Table of Contents

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 2

Table of Contents

1 Overview ... 3

2 Introduction to HiSLIP ... 4

2.1 Overview .. 4

2.1.2 Setup and Protocol Stack .. 5

2.2 Comparison with Other VISA INSTR Protocols ... 6

2.3 HiSLIP Channels ... 8

2.4 HiSLIP Messages and Sequences .. 8

2.4.1 Communications Model ... 8

2.4.2 Operating Modes .. 9

2.4.2.1 Overlapped Mode ... 9

2.4.2.2 Synchronized Mode ...10

2.5 Remote/Local Instrument Control ..11

2.6 Instrument Locking ..12

2.7 HiSLIP Protocol Support in the VISA Library ..13

3 Getting Started ... 14

3.1 Using HiSLIP in Remote Instrument Control Applications14

3.2 Example with C Programming Language ..16

4 FAQ ... 17

4.1 Synchronizing Remote Control Applications ..17

4.2 Possible Race Conditions in a Remote Control Application17

5 References .. 20

6 Appendix ... 21

6.1 Example ...21

Overview

Overview

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 3

1 Overview
This application note introduces the High-Speed LAN Instrument Protocol (IVI HiSLIP).
This protocol was developed by the IVI Foundation1 and is recommended as LXI
HiSLIP Extended Function for LXI based instrumentation2.

Like GPIB3 and the LAN-based VXI-114 protocol, HiSLIP includes implementation of
the IEEE 488.2 communications protocol. HiSLIP includes more IEEE 488.2 protocol
features than VXI-11, which provides better GIPB functionality over the LAN network.

The features of the HiSLIP implementation in the latest Rohde & Schwarz instruments
is presented. This application note refers to the latest HiSLIP-compatible Virtual
Instrument Software Architecture5 (VISA).

The first part of this document introduces the key features of HiSLIP and a technical
comparison with other IEEE 488.2-based communications buses. The second part
explains how to set up systems to incorporate HiSLIP into remote control applications.
The final part answers frequently asked questions concerning HiSLIP synchronization.

1 IVI-6.1: High-Speed LAN Instrument Protocol (HiSLIP),
http://www.ivifoundation.org/downloads/Class%20Specifications/IVI-6.1_HiSLIP-1.1-
2011-02-24.pdf, Retrieved 2012-10-04
2 LXI stands for LAN eXtensions for Instrumentation,
http://www.lxistandard.org/Documents/Specifications/LXI_HiSLIP_Extended_Function_
Test_Procedures_v1_01.pdf, Retrieved 2012-10-04
3 General Purpose Interface Bus (GPIB) according to IEC/IEEE Standard for Higher
Performance Protocol for the Standard Digital Interface for Programmable
Instrumentation - Part 1: General (Adoption of IEEE Std 488.1-2003), IEEE, Retrieved
2012-10-04
4 TCP/IP Instrument Protocol Specification VXI-11,
http://www.vxibus.org/files/VXI_Specs/VXI-11.zip, Retrieved 2012-10-04
5 VPP-4.3: The VISA Library, http://www.ivifoundation.org/docs/vpp43.pdf, Retrieved
2012-10-04

Introduction to HiSLIP

Overview

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 4

2 Introduction to HiSLIP
HiSLIP is the future protocol for TCP/IP-based control of IEEE 488.2 message-based
instruments. It includes the conventional features used to control instruments as well
as advanced functions. It also offers better performance. HiSLIP can replace GPIB
interfaces as well as the VXI-11 and USBTMC6 protocols. HiSLIP was developed for
one-to-one compatibility with VXI-11, which can be replaced easily with a simple
modification of the instrument resource string.

2.1 Overview

HiSLIP is a non-proprietary standard approved by the IVI Foundation. The standard is
supported by various versions of the VISA I/O library. Consequently, the LXI
Consortium adopted HiSLIP as the recommended LAN instrument control protocol for
LXI devices. HiSLIP includes the IEEE 488.2 communications features that were
missing in the VXI-11 protocol, making it well-suited to replace VXI-11 for the LAN-
based control of instruments. In contrast to the VXI-11 protocol, HiSLIP has been
developed to work in conventional IPv4 Ethernet networks7 and IPv6 Ethernet
networks. This makes it transparent to the Internet Protocol layer, which is responsible
for the virtual addressing of the network components’ interfaces.

 A selection of IEEE 488.2 protocol features included in HiSLIP:

● Device clear transaction
● Serial poll & status query
● Trigger message
● Service request
● Interrupted error detection via message exchange protocol (IEEE

488.2-compatible)
● Lock management with exclusive and shared locks for controlling multiple virtual

instruments

6 USBTMC is the USB interface based IEC 60488-2:2004
7 IEEE 802.3-2008 Standard, http://standards.ieee.org/about/get/802/802.3.html,
Retrieved 2012-10-04

Introduction to HiSLIP

Overview

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 5

2.1.2 Setup and Protocol Stack

The SCPI commands for remote control are issued by a remote control application.

Fig. 1: Basic setup for instrument (server) controlled via PC-based remote controller (PC)

VISA is the standard I/O interface for communicating with the LAN-connected
instrument (server) from the application layer of the controller (PC):

VISA

TCP/IP

Test Application

PCIe-GPIB

IEEE 488.1/2

LANUSB

VXI-11 HiSLIP

S
oc

ke
t

USB-GPIB

ONC/RPC

Fig. 2: Extract of the protocol stack and hardware interfaces at the controller for remote instrument

control

Stimulus

Device under test

Measurement

Responses,
measurements

Configuration, queries, ...

#!Test

Write('CONF:LTE:MEAS:…')

Write('INIT:LTE:MEAS:…')

Query('FETC:LTE:MEAS:…?')

…

Introduction to HiSLIP

Comparison with Other VISA INSTR Protocols

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 6

2.2 Comparison with Other VISA INSTR Protocols

The following table compares several HiSLIP features with the VXI-11 protocol and raw
sockets8 connections via LAN. HiSLIP supports all major protocol functions required to
remotely control the instrument (server) and offers greater flexibility:

Comparison of major protocol features

Feature Raw sockets VXI-11 HiSLIP

GPIB emulation –

Instrument locking
(shared & exclusive)

– ()9

Support of message exchange
protocol

–

IPv6 support –

High performance –

Table 1: Comparison of major protocol features

Major improvements of HiSLIP over VXI-11:

● HiSLIP does not use the ONC/RPC10 protocol in the same way as VXI-11. HiSLIP
eliminate superfluous messages and improve performance.

● HiSLIP is more “IT-friendly” than VXI-11, allowing easier data transfer through
firewalls and routers. Since only a single port number (IANA11 TCP port 4880) is
registered, firewall configuration is much simpler.

● HiSLIP supports exclusive and shared locks, whereas VXI-11 only supports
exclusive locks. A smooth lock mechanism allows locking programs to coexist with
lock-unaware programs.

The table below shows the maximum theoretical bandwidth supported by the most
common remote control interfaces.

8 Raw sockets connections allowing direct programming of server via its message
channel using the telnet protocol (a socket API). The lack of a control channel creates
major limitations in binary transmission, synchronization, service requests, triggering
and error handling, e.g. the missing device clear transaction can cause problems.
9 Supports exclusive locking only.
10 https://tools.ietf.org/html/rfc1831, Retrieved 2012-10-04
11 Internet Assigned Numbers Authority, http:://www.iana.org

Introduction to HiSLIP

Comparison with Other VISA INSTR Protocols

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 7

Bandwidth comparison of interfaces and protocols for remote control

Interface Maximum interface

throughput

Protocol Typical

throughput

1 Gbit/s LAN 125 Mbyte/s HiSLIP, Raw
Sockets

up to 60 Mbyte/s

100 Mbit/s LAN 12.5 Mbyte/s HiSLIP, Raw
Sockets

11 Mbyte/s

1 Gbit/s LAN 125 Mbyte/s VXI-11 34 Mbyte/s

100 Mbit/s LAN 12.5 Mbyte/s VXI-11 11 Mbyte/s

USB 2.0 60 Mbyte/s USBTMC 18 Mbyte/s

GPIB-PCI 1.812 Mbyte/s IEEE 488.2 1 Mbyte/s

Table 2: Bandwidth comparison of interfaces and protocols for remote control

Speed comparison with other VISA INSTR protocols

Aside from the previously mentioned HiSLIP features, one major advantage of the
protocol is its improved performance. The following table provides a general
performance comparison. The test was carried out using a modern desktop PC with a
1 Gbit/s LAN network connection to the R&S®FSW13 Signal and Spectrum Analyzer.

Speed comparison of interfaces and protocols for remote control

14

Commands Raw

sockets
15

NI GPIB-

PCI

USBTMC VXI-11 HiSLIP VXI-11 vs.

HiSLIP

viReadSTB(…) n.a. ~190us per
call

~305us per
call

~300us per
call

~140us per
call

~53 % faster

*OPC? ~180 us
per call

~530us per
call

~250us per
call

~610us per
call

~210us per
call

~65 % faster

Writing 3Mbyte
to instrument

No binary
transmissi
on

~2800ms
per transfer

~590ms per
transfer

~250ms per
transfer

~29ms per
transfer

~88 % faster

Reading
3Mbyte from
instrument

No binary
transmissi
on

~3220ms
per transfer

~232ms per
transfer

~160ms per
transfer

~115ms per
transfer

~28 % faster

Table 3: Speed comparison of interfaces and protocols for remote control

The throughput between the controller and server (instrument) is limited by various
factors and the interactions between these factors, e.g. hard disc speed, network
controller, controller (desktop PC) capacity, network topology, router and even the
quality of the actual cables.

12 IEEE 488 interlocked handshake.
13 www.rohde-schwarz.de/product/FSW.html, firmware version 1.51.
14 The times per call are averaged over 1000 single time measurements for
viReadSTB() and “*OPC?” query commands. The file transfer was repeated five times
executed and the time are averaged as well.
15 The telnet protocol does not support the VISA API function viReadSTB().
Furthermore no binary data transmission is possible.

Introduction to HiSLIP

HiSLIP Channels

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 8

2.3 HiSLIP Channels

HiSLIP uses a simplified connection model with two TCP connections (port 4880) to a
single instrument (server) that is controlled remotely from a controller (PC).

Both the client and the server can store messages in the synchronous buffers and
execute them in the given order:
● Data
● DataEND
● Trigger

The asynchronous channel carries GPIB-like meta messages that have to be
processed in parallel to the data path:
● Device clear transaction
● Status query & serial polling
● Service request (program interrupt)
● Remote/local instrument control
● Locking and lock information of an instrument
● and others for asynchronous (out-of-band) control commands
● Improved remote/local status control

Both the controller and the instrument (server) handle asynchronous messages with
higher priority, processing them before messages received via the synchronous
channel.

2.4 HiSLIP Messages and Sequences

2.4.1 Communications Model

HiSLIP data is sent in a “fire and forget” manner with immediate return – unlike VXI-11,
whereby each VISA write or VISA read operation is blocked until a VXI-11 device
handshake is returned. As a result, it is not possible to guarantee that the instrument
has finished (or even started) processing the requested operation before the next
request is received. This causes the new request to be stored in the TCP/IP buffers of
the instrument (server).

The following figure shows the error-free mechanism for message exchange. No
acknowledgement messages are transferred between the controller and server (no
handshake).

Introduction to HiSLIP

HiSLIP Messages and Sequences

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 9

PC

VISA

PC

HiSLIP

R&S

Instrument

viWrite(*CLS)

viRead(bufsize=50)

viWrite(*IDN?)

viWrite(SYST:ERR?)

<DataEND><RMT=0><0><…>“*CLS“

<DataEND><RMT=1><4><…>“SYST:ERR?“

<DataEND><RMT=0><2><…>“*IDN?“

<DataEND>< -- ><2><…>“R&S Device“ RMT = 1 expected
with next DataEND
message from PC

Clear Status

Queries instrument
ID string

Queries error entries
in the Event Queue

Fig. 3: Simple message sequence between controller (PC) and instrument (server)

As a compensation for the acknowledgement messages of the VXI-11, the RMT bit
(remote message terminator) is introduced. The RMT bit in the messages indicates if
this is the first Data, DataEND or Trigger message since the controller (PC) has
finished reading completely a previous data message from the instrument (server).
Thereby the instrument can detect if the controller has received the instrument’s
DataEND message before the controller has sent its next message. The instrument
expects RMT = 1 after having sent its DataEND message.
This mechanism saves time compared to usual handshake message sequences as
used in the VXI-11 protocol.
The controller increments the Message ID used as sequence number with each Data,
DataEND or Trigger message sent.

2.4.2 Operating Modes

HiSLIP supports two different operating modes.

2.4.2.1 Overlapped Mode

This mode is similar to raw sockets mode. Input and output data and trigger messages
are arbitrarily buffered between the controller and the controlled instrument. Their
responses are returned in the same order as the queries were sent.

Introduction to HiSLIP

HiSLIP Messages and Sequences

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 10

2.4.2.2 Synchronized Mode

This mode closely resembles the requirements of the IEEE 488.2 message exchange
protocol for detecting interrupted errors. In general, the synchronized mode and
message exchange protocol ensure the instrument (server) responds only to the last
query. An incoming response is discarded if it is not associated with the last query that
was sent. The synchronized mode ensures compatibility with GPIB, VXI-11 and
USBTMC instruments and is the mode supported by the Rohde & Schwarz
instruments.
Reading the VISA attribute VI_ATTR_TCPIP_HISLIP_OVERLAP_EN returns the
protocol mode of the current session (VI_FALSE for Rohde & Schwarz instruments).

Interrupted error detection in synchronized mode

Interrupted errors are detected and processed on the controller side or on the
instrument side. If the controller sends two queries to the instrument and receives the
DataEND response to the first query after the second query has been sent, any data
responses already buffered in the controller are cleared, which generates an
interrupted protocol error. If the instrument receives a second query from the controller
before it has finished sending the response to the first query, or if the second query is
sent before the controller has received the complete response to the first query, the
instrument stops responding to the first query, generates an interrupted error and
sends an interrupted message to the controller. Then the instrument sends the
controller the response to the second query.
The following figure shows an example where the second query of the controller and
the first response of the instrument cross “in-flight”.

PC

VISA

PC

HiSLIP

R&S

Instrument

viRead(bufsize=50)

viWrite(*IDN?)

viWrite(SYST:ERR?)

<DataEND><RMT=0><2><…>“*IDN?“

<DataEND>< -- ><4><…>
’-410,“Query INTERRUPTED“’

<DataEND>< -- ><2><…>“R&S Device“ RMT = 1 expected
with next DataEND
message from PC

RMT = 0
generates error
in Event Queue

discard
response

<DataEND><RMT=0><4><…>“SYST:ERR?“

Fig. 4: Message sequence with interrupted error

The controller detects an interrupted error by comparing the sequence number of its
last query with the sequence number of the instrument’s response. Both sequence
numbers should be equal. After detection of the interrupted error, the controller
discards the response.

Introduction to HiSLIP

Remote/Local Instrument Control

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 11

The instrument detects the interrupted error due to RMT = 0 in the controller’s
DataEND message: The instrument sets its RMT expectation value to 1 when sending
its DataEND message. RMT = 1 would indicate that the controller had received the
instrument’s DataEND message before sending the second query; RMT = 0 indicates
that the controller had not yet read the first response from the TCP/IP buffers. After
detection of the interrupted error, the instrument reports the error. Since the instrument
has already finished the first response it takes no additional action. The instrument
responds to the last query from the controller in the normal way even with the correct
response “-410,”Query Interrrupted”“.

One possible variation occurs when the instrument detects the wrong RMT value while
responding to a previous query. As a result, the instrument would stop responding and
would send an interrupted message to the controller, which would then prompt the
controller to discard the incomplete response.

2.5 Remote/Local Instrument Control

The remote/local instrument control prevents manual operation of the instrument from
its front panel when the instrument is being controlled remotely with SCPI commands.
The local key16 allows to regain access to the instrument to manual operation, while an
instrument is still connected to a valid remote control session.

HiSLIP can control the remote/local state of an instrument in a GPIB mnemonic similar
to the function call viGpibControlREN(…)17. The remote-local commands are sent on
the asynchronous channel for GPIB as meta-messages.

For practical reasons, three VISA modes from viGpibControlREN(…) are also specified
for HiSLIP:
● Disable front panel operation, controlled by VI_GPIB_REN_ASSERT_ADDRESS

mode. Local lockout key is functional.
● Disable front panel operation and perform a local lockout, controlled by

VI_GPIB_REN_ASSERT_ADDRESS_LLO mode. Local lockout key is blocked.
● Enable front panel operation and undo a possible local lockout, controlled by

VI_GPIB_REN_DEASSERT mode.

It is important to remember that without instrument locking, SCPI commands will
always be accepted by the instrument.

16 IEEE 488 defines the local key in the instrument to regain front panel access, when
the front panel access has been disabled via a remote interface.
17 http://www.ivifoundation.org/docs/vpp43.pdf, p.273f. IVI Foundation, Retrieved 2012-
10-04

Introduction to HiSLIP

Instrument Locking

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 12

2.6 Instrument Locking

HiSLIP supports exclusive and shared locking as specified according to the VXIPNP
VISA standard18. This locking mechanism affects all synchronous and asynchronous
commands sent to the instrument after the VISA session has been initialized. Similar to
the remote/local state control, this feature allows access for controlling the remote
control interfaces of the instrument. When a client closes its session, all locks
belonging to this session are released.

Possible configurations:

● Server is not locked
– This allows any client to communicate with the server (instrument).
– Any client can request a shared or an exclusive lock.

● Client holds an exclusive lock
– This allows one-to-one communications between the server and the client

holding the exclusive lock.
– No other clients are allowed to send messages to the locked instrument.

● Multiple clients are holding a shared lock
19

– All clients holding this single shared lock are allowed to communicate with the
instrument.

– One client holding this single shared lock is allowed to request an exclusive
lock. The server grants the exclusive lock one client at a time. While the
exclusive lock is active, no other client holding a shared lock is allowed to send
commands to the instrument.

– No other clients are allowed to send messages to the locked instrument.
If a client holds a shared or exclusive lock, the following applies for clients that do not
hold a lock:
● Any lock request will either be granted access if the requested lock becomes

available or will timeout after the specified waiting period.
● A device clear transaction is executed immediately. Only the parameters applying

to this session are affected; server parameters which also apply to other sessions
are not affected.

● Messages sent over the synchronous channel to the server remain in the input
buffer. This buffer is handled by the TCP behavior to avoid buffer overflows.

● Any synchronous or asynchronous transactions in progress are completed as
usual, causing all data traffic to be transferred from the server to the client.

● Asynchronous service requests are sent to the client in the normal way.

18 http://ivifoundation.org/docs/vpp43.pdf, p37ff, Retrieved 2012-10-04.
19 A shared lock is identified by a string.

Introduction to HiSLIP

HiSLIP Protocol Support in the VISA Library

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 13

2.7 HiSLIP Protocol Support in the VISA Library

VISA is the standard I/O interface for accessing the instrument from the application
layer on the controller. The following VISA versions support the HiSLIP protocol:
● NI-VISA: supports HiSLIP since version 5.1.0 (IPv4).

NI-VISA versions 5.2.0 and later is recommended to achieve maximum
performance.

● Agilent IO Libraries Suite: supports HiSLIP (IPv4 and IPv6) versions 16.2 and later.

Getting Started

Using HiSLIP in Remote Instrument Control Applications

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 14

3 Getting Started
A main objective of HiSLIP was to minimize integration testing complexity for existing
applications. HiSLIP can coexist or even replace VXI-11 in current and future remote
control applications.

3.1 Using HiSLIP in Remote Instrument Control

Applications

One key requirement during the development of HiSLIP was to maximize the simplicity
of migrating remote control software from one of major remote control interface (GPIB
or VXI-11) to the LAN-based HiSLIP for end users. The result of these efforts was a
simple, four-step setup procedure for HiSLIP:
1. Check availability of HiSLIP for remote control channels of the server

(instrument)
Check if the instrument supports HiSLIP. The following Rohde & Schwarz
instruments support HiSLIP:
 R&S®CMW500 (since firmware version 3.x.y)
 R&S®ZNB (since firmware version 1.63)
 R&S®ZNC (since firmware version 1.63)
 R&S®FSW (since firmware version 1.60)
 R&S®SMBV100A (since firmware version 2.20.360.114)
 R&S®SGS100A (since firmware version 2.20.417.20)
 R&S®SMA100A (since firmware version 2.20.470.18)
 R&S®SMB100A (since firmware version 2.20.382.35)
 R&SRSC (since firmware version 1.34)

2. Enable HiSLIP on your VISA client (remote control PC)

Your controller (remote control PC) must also support HiSLIP. There are currently
two possible configurations for Windows®-based clients:
a) National Instruments VISA

NI-VISA versions 5.2.0 and later is recommended to achieve maximum
performance.

b) Agilent IO Libraries Suite
HiSLIP for IPv6 and IPv4 are supported by Ag-VISA versions 16.2 and later.

Now your client and server are ready to communicate with your instrument via
HiSLIP.
For information regarding the Rohde & Schwarz instrument driver HiSLIP support,
please refer to the latest version of the history release notes.

Getting Started

Using HiSLIP in Remote Instrument Control Applications

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 15

3. Change the VISA resource string

Find out the IP address or hostname (alias for the IP address of the instrument) of
the instrument. The address structure for HiSLIP20 is as follows:

TCPIP[Interface number]::<IP address>|<Hostname>::hislip0[,<port>][::INSTR]

The shortest possible HiSLIP VISA resource string would resemble the following:

TCPIP::CMW500-100052::hislip0

If constant instrument VISA aliases are defined in the Measurement & Automation
Explorer software or in the Agilent Connection Export software please refer to the
corresponding software documentation for further information.

4. Send SCPI commands to your instrument

The easiest way to communicate with an instrument is to use the interactive tools
provided by National Instruments Measurement & Automation Explorer or using
the Agilent Connection Expert.
At this point, your remote control application or your test system infrastructure is
ready to be configured for use with the instrument.

After successfully establishing the connection to the instrument, single commands
can be sent and responses can be easily read from the instrument.

This screenshot shows the scenario with the National Instruments software
tools:

Fig. 5: Example scenario to send single SCPI commands to an instrument via HiSLIP using a

VISA alias name

20 In comparison, the shortest possible VXI-11 VISA resource string looks very similar:
“TCPIP::CMW500-100052”

Getting Started

Example with C Programming Language

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 16

3.2 Example with C Programming Language

Appendix 6.1 contains a small sample of source code. This demonstrates a speed
comparison of HiSLIP, GPIB, VXI-11 and raw socket connections.

FAQ

Synchronizing Remote Control Applications

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 17

4 FAQ
The following section provides an overview on how to successfully begin development
with the HiSLIP protocol and how to migrate from VXI-11 to HiSLIP.

For information regarding the SCPI programming, please refer to the application notes
“1EF62: Hints and Tricks for Remote Control of Spectrum and Network Analyzers”,
“1GP79: Top Ten SCPI Programming Tips for Signal Generators” or “1CM100:
Optimizing the Performance of Multi Eval. List Mode Tests” (References).

4.1 Synchronizing Remote Control Applications

Remote control applications have to be synchronized with the remote instrument. This
is very important. Otherwise, erroneous measurement data and/or undesirable,
unstable program behavior may occur.
Some T&M instruments involve time-consuming operations, e.g. because
measurements have to be calculated from large data sets or switching between
different configurations is required. Special SCPI commands are provided for this
reason. They are referred to as “overlapping SCPI commands”. This means that the
execution and processing of a command takes a considerable amount of time. The
instrument accepts and processes queries in addition to set commands while the
overlapping command is being processed21. This means that the “operation complete”
state of these SCPI commands has to be sent to the controller (e.g. PC remote control
application).

For information regarding the remote control instrument synchronization, please refer
to the latest version of the instrument manual. For further information please refer to
the VISA programming guide.

4.2 Possible Race Conditions in a Remote Control

Application

Race conditions do not occur when the overlapping SCPI command synchronization is
realized by the “*OPC?” query command or the “*WAI” control command.

21 If the set command is affecting the currently running operation, the operation is
restarted. For example, perform a trace measurement with 100 sweeps on the
R&S®FSW Signal and Spectrum Analyzer. The command that starts this measurement
is overlapping. During these 100 sweeps, the center frequency, for example, can be
changed via remote control. In this case, the sweep count restarts with one again using
the modified parameter set.

FAQ

Possible Race Conditions in a Remote Control Application

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 18

HiSLIP supports two paths for the data and the control channel. This is similar to the
GPIB (IEEE 488.2) interface. In HiSLIP the control channel has a higher execution and
processing priority as the data channel. The VXI-11 protocol also uses two channels
for data and control messages. The commands are synchronized to a certain extent
using RPC22 acknowledgement messages (refer to chapter 2.4.1).

How does the parallel channels of HiSLIP result in a race condition?

At first glance, these simple measurement steps for a spectrum analyzer should not
cause any significant problems:

/*
Reset the spectrum analyzer and configure the
status subsystem to allow operation complete
synchronization (*OPC) and service requests (SRQ)
indication in the STB register
*/
#1 LOOP_BEGIN_MEASUREMENTS
#2 *CLS;INIT:IMM;*OPC\n
#3 WHILE MEASUREMENT in PROGRESS
#4 viReadSTB(); //repeated STB byte reads
 //to check if measurement is
 //in progress
#5 FETCH:MEAS:DATA?\n
#6 LOOP_END

This is the case with VXI-11 connections, but this code might result in erroneous
measurement data when using HiSLIP23.
The problem occurs if this example loop is executed more than once (step 1 to 6). The
instrument state before the second iteration (step #2) is as the following: one valid
measurement was performed by step #2 in the first iteration of the measurement loop.
Therefore valid measurement data is still available in the output buffer of the
instrument along with pending information about the operation complete status in the
status subsystem.

22 RPC stands for remote procedure calls, refer to
http://en.wikipedia.org/w/index.php?title=Remote_procedure_call&oldid=509236106,
Retrieved 2012-10-04.
23 This race condition does not occur with GPIB (IEEE 488.2) connections in the field.

FAQ

Possible Race Conditions in a Remote Control Application

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 19

On a fast controller line #2 and line #4 are sent to the instrument almost at the same
time24. In the second iteration of the measurement loop this lead to the situation that
the command line #1 (cleaning the status subsystem25 and starting the measurement
with operation complete synchronization) will be processed by the instrument after the
processing the viReadSTB() query. This query returns the “operation complete” status
information from the first run of the measurement loop. This allows the program to
immediately continue reading measurement values. The measurement data can be a
result of the first measurement, because in some cases the instrument is not even
finished with the processing of the command sequence sent over the data channel
(line #2).

One possible method is to perform synchronization by ensuring there is no remaining
data in the status subsystem after the first run. This would result in the following:

/*
Reset the spectrum analyzer and configure the
status subsystem to allow operation complete
synchronization (*OPC) and service requests (SRQ)
indication in the STB register
*/
#1 LOOP_BEGIN_MEASUREMENTS
#2 *CLS;INIT:IMM;*OPC;*STB?\n
#2a viRead(); //first STB byte read to check if
 //measurement is in progress
#3 WHILE MEASUREMENT in PROGRESS
#4 viReadSTB(); //repeated STB byte reads
 //to check if measurement is
 //in progress
#5 FETCH:MEAS:DATA?\n
#6 LOOP_END

This allows to synchronize the clearing of the status subsystem. After reading the
“*STB?” query the instrument processed the line #2 completely . The query allows to
synchronize the “*CLS” (clean status subsystem), to the start of the measurement and
all following read queries.

24 The commands in line #2 and #5 are transmitted over the HiSLIP synchronous data
channel, whereas the command in line #4 is transmitted over the HiSLIP control
channel. The commands in the control channel are executed with a higher priority
(refer to section 2.3)
25 For more information on the status subsystem, refer to the instrument manual
available at:
http://www.rohde-schwarz.com/en/service_and_support/Downloads/Manuals/

References

Possible Race Conditions in a Remote Control Application

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 20

5 References
● IVI High-Speed LAN Instrument Protocol, IVI Foundation,

http://www.ivifoundation.org/downloads/Class%20Specifications/IVI-6.1_HiSLIP-
1.1-2011-02-24.pdf, Retrieved 2012-10-04

● TCP/IP Instrument Protocol Specification VXI-11, VXIbus Consortium,
http://www.vxibus.org/files/VXI_Specs/VXI-11.zip, Retrieved 2012-10-04

● Automated Measurement Control, John M. Pieper, Rohde & Schwarz
● 1EF62: Hints and Tricks for Remote Control of Spectrum and Network Analyzers,

Johannes Ganzert, Application Note,
http://www.rohde-schwarz.com/appnote/1ef62, Retrieved 2012-10-04

● 1GP79: Top Ten SCPI Programming Tips for Signal Generators, Caroline Tröster,
Application Note, http://www.rohde-schwarz.com/appnote/1gp79, Retrieved 2012-
10-04

● 1CM100: Optimizing the Performance of Multi Eval. List Mode Tests, Klaus
Lienhart, Application Note, http://www.rohde-schwarz.com/appnote/1cm100,
Retrieved 2012-10-04

Appendix

Example

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 21

6 Appendix

6.1 Example

Example source code to measure the remote control performance for short commands:

/**
 Speed test
 32-bit only (-> due to VISA framework limitation on Mac OS X!)
 Note: Please do not forget compiler optimization
 @JE, R&S
 **/

#include <stdio.h>
#include <stdint.h>
#include <sys/types.h>

/***/
//Utility routines

#if defined(_MSC_VER)
//Windows platform!
#include <visa.h>
#include <windows.h>
#include <time.h>
#if defined(_MSC_VER) || defined(_MSC_EXTENSIONS)
 #define DELTA_EPOCH_IN_MICROSECS 11644473600000000Ui64
#else
 #define DELTA_EPOCH_IN_MICROSECS 11644473600000000ULL
#endif

struct timezone
{
 int tz_minuteswest; /* minutes W of Greenwich */
 int tz_dsttime; /* type of dst correction */
};

int _gettimeofday(struct timeval *tv, struct timezone *tz)
{
 FILETIME ft;
 unsigned __int64 tmpres = 0;
 static int tzflag;

 if (NULL != tv)
 {
 GetSystemTimeAsFileTime(&ft);

 tmpres |= ft.dwHighDateTime;
 tmpres <<= 32;
 tmpres |= ft.dwLowDateTime;

 /*converting file time to unix epoch*/
 tmpres -= DELTA_EPOCH_IN_MICROSECS;
 tmpres /= 10; /*convert into microseconds*/
 tv->tv_sec = (long)(tmpres / 1000000UL);
 tv->tv_usec = (long)(tmpres % 1000000UL);
 }

 if (NULL != tz)
 {
 if (!tzflag)
 {

Appendix

Example

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 22

 _tzset();
 tzflag++;
 }
 tz->tz_minuteswest = _timezone / 60;
 tz->tz_dsttime = _daylight;
 }

 return 0;
}

#else
//Mac OS X platform!
#include <VISA/VISA.h>
#include <sys/time.h>
#endif

double getwalltime()
{
 struct timeval tp;
 double sec, usec;
 // Time stamp before the computations
 _gettimeofday(&tp, NULL);
 sec = (double)tp.tv_sec;
 usec = (double)tp.tv_usec/1E6;

 return (double) sec + usec;
}

/***/
//Measurement routines
#define BUFFER_SIZE 4096
#define MEASUREMENT_CYCLES 1000
#define MUTATION 2
#define SCPI_MARKER_SETUP_INIT "*RST;*WAI;:INIT:CONT OFF;:INIT:IMM;:CALC:MARK1
ON;*OPC?\n"
#define SCPI_MARKER_QUERY ":CALC:MARK1:X %.f;*WAI;:CALC:MARK1:Y?\n"
#define SCPI_OPC_QUERY "*OPC?\n"

int open_resource(ViSession rm, char* resource, ViPSession io)
{
 ViInt32 ret = VI_ERROR_SYSTEM_ERROR;
 char buf[BUFFER_SIZE];
 buf[0] = '\0';

 if(resource == NULL)
 return ret;

 ret=viOpen(rm, resource, VI_NULL, VI_NULL, io);
 if (ret!=VI_SUCCESS)
 {
 printf("Open VISA resource failed!\n");
 return ret;
 }

 ret=viLock(*io, VI_EXCLUSIVE_LOCK, 0, "", VI_NULL);
 if (ret!=VI_SUCCESS)
 {
 printf("Exclusiv locking of VISA resource failed!\n");
 return ret;
 }

 //socket test
 viSetAttribute(*io, VI_ATTR_TERMCHAR_EN, VI_TRUE);

Appendix

Example

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 23

 viQueryf(*io, "*IDN?\n", "%s", buf);
 printf("\n*********\n");
 printf("Resource open and locked: %s\n", buf);

 return ret;
}

void close_resource(ViSession io)
{
 ViAccessMode val = VI_NO_LOCK;
 while(TRUE)
 {
 viGetAttribute(io, VI_ATTR_RSRC_LOCK_STATE, &val);
 if(val != VI_NO_LOCK)
 viUnlock(io);
 else
 break;
 }

 viClose(io);
}

void print_report(char *resource, char* command, double total_time)
{
 printf("*********\n");
 printf("VISA Resource: %s\n", resource);
 printf("Query: %s\n", command);
 printf("Total time: %f\n", total_time);
 printf("Measurement cycles: %d\n", MEASUREMENT_CYCLES);
 printf("Average query time: %f\n\n", total_time/MEASUREMENT_CYCLES);
}

int performance_test_query(ViSession rm, char* resource, char* command)
{
 ViSession io = VI_NULL;
 int i;
 int ret = VI_ERROR_SYSTEM_ERROR;
 double start;
 double end;
 double total_time = .0;
 double temp;
 char rd_buffer[BUFFER_SIZE];
 ViUInt16 unused_val_stb = 0;

 rd_buffer[0] = '\n';

 if(resource == NULL)
 {
 printf("ERROR: Resource must not be empty!\n");
 return ret;
 }

 if(command == NULL)
 {
 printf("ERROR: Command must not be empty!\n");
 return ret;
 }

 //open resource for query speed test
 ret = open_resource(rm, resource, &io);
 if(ret != VI_SUCCESS)
 return ret;

 //do the measurement n-times
 for (i=0; i<MEASUREMENT_CYCLES; i++)
 {
 //start time

Appendix

Example

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 24

 start=getwalltime();

 //for speed test viReadSTB() query speed
 //test insert your code here
 //viReadSTB(io, &unused_val_stb);

 //speed test query command
 viQueryf(io, command, "%s\n", rd_buffer);

 //stop time
 end=getwalltime();

 //sum up milliseconds
 temp = end-start;
 if(temp>=0.){
 total_time += temp;
 }
 else{
 printf("ERROR: Time measuerment failed, start time bigger than stop time");
 total_time = 0;
 return ret;
 }
}

 //close the resoucre
 close_resource(io);

 //calculate average time
 print_report(resource, command, total_time);

 return VI_SUCCESS;
}

int performance_test_sa_measurement(ViSession rm, char* resource)
{
 ViSession io=VI_NULL;
 int ret = VI_ERROR_SYSTEM_ERROR;
 int i;
 char rd_buffer[BUFFER_SIZE];
 double centerfreq[MUTATION];
 char wrt_buffer[MUTATION][BUFFER_SIZE];
 double start;
 double end;
 double total_time = .0;
 double temp;

 rd_buffer[0] = '\n';
 centerfreq[0] = 0.8e9;
 centerfreq[1] = 1.2e9;

 sprintf(wrt_buffer[0], SCPI_MARKER_QUERY, centerfreq[0]);
 sprintf(wrt_buffer[1], SCPI_MARKER_QUERY, centerfreq[1]);

//open resource for query speed test
 if(resource == NULL)
 {
 printf("ERROR: Resource must not be empty!\n");
 return ret;
 }

 ret = open_resource(rm, resource, &io);
 if(ret != VI_SUCCESS)
 {
 return ret;
 }

 //setup instrument and initate measurement
 viQueryf(io, SCPI_MARKER_SETUP_INIT, "%s\n", rd_buffer);

Appendix

Example

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 25

 //do the measurement n-times
 for (i=0; i<MEASUREMENT_CYCLES; i++)
 {
 //start time
 start=getwalltime();

 if(i%2)
 //set marker to f1 and query
 viQueryf(io, wrt_buffer[0], "%s\n" ,rd_buffer);
 else
 //set marker to f2 and query
 viQueryf(io, wrt_buffer[1], "%s\n", rd_buffer);

 //stop time
 end=getwalltime();

 //sum up milliseconds
 temp = end-start;
 if(temp>=0.){
 total_time += temp;
 }
 else{
 printf("ERROR: Time measuerment failed, start time bigger than stop time");
 total_time = 0;
 return ret;
 }
 }

 //close the resoucre
 close_resource(io);

 //calculate average time
 print_report(resource, SCPI_MARKER_QUERY, total_time);

 return VI_SUCCESS;
}

int main (int argc, const char * argv[])
{

 ViSession rm;
 int ret=VI_SUCCESS;
 char resource_gpib[] = "GPIB::20";
 char resource_vxi[] = "TCPIP::10.110.10.216::instr";
 char resource_hislip[] = "TCPIP::10.110.10.216::hislip0";
 char resource_socket[] = "TCPIP::10.110.10.216::5025::SOCKET";
 char command[] = SCPI_OPC_QUERY;

 if (MEASUREMENT_CYCLES<1)
 {
 printf("\nSet the amount of measurement cycles <0\n");
 return VI_ERROR_SYSTEM_ERROR;
 }

 //open the local VISA resource manager
 if(VI_SUCCESS != viOpenDefaultRM(&rm))
 {
 printf("\nOpen VISA resource manager failed!\n");
 return VI_ERROR_SYSTEM_ERROR;
 }

 //gpib test
 performance_test_query(rm, resource_gpib, command);
 performance_test_sa_measurement(rm, resource_gpib);
 //VXI-11 test
 performance_test_query(rm, resource_vxi, command);
 performance_test_sa_measurement(rm, resource_vxi);
 //HiSLIP test

Appendix

Example

1MA208_0e Rohde & Schwarz
 Fast Remote Instrument Control with HiSLIP 26

 performance_test_query(rm, resource_hislip, command);
 performance_test_sa_measurement(rm, resource_hislip);
 //SOCKET test
 performance_test_query(rm, resource_socket, command);
 performance_test_sa_measurement(rm, resource_socket);

 //close the local VISA resource manager
 viClose(rm);

 return ret;
}

